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Abstract
Background  Microglial activation has been suggested to be involved in the pathogenesis of depression and 
Alzheimer’s disease (AD). Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) is a marker of microglial 
activation. The purpose of this study was to investigate the interrelationships of cerebrospinal fluid (CSF) sTREM2, AD 
pathology, as well as minimal depressive symptoms (MDSs), and cognition.

Methods  A total of 545 non-demented individuals from the Alzheimer’s Disease Neuroimaging Initiative cohort 
were included in our study. The average age of the total population was 72.6 years and the percentage of females was 
42.6%. Linear regression models were conducted to investigate the linear relationships of MDSs with CSF sTREM2, AD 
pathology, cognition, and brain structure. Mediation models and structural equation models (SEM) were conducted 
to examine whether CSF sTREM2 mediated the relationships of MDSs with AD pathology and cognition.

Results  Results revealed that individuals with MDSs had lower CSF sTREM2 levels than normal controls. Linear 
regression showed that MDSs were linearly associated with CSF sTREM2 (PFDR = 0.012) and amyloid biomarkers (PFDR 
< 0.05), as well as cognitive scores (PFDR < 0.05) and hippocampal volume (PFDR = 0.003). Mediation analyses revealed 
that CSF sTREM2 mediated the association between MDSs and amyloid pathology, with the mediating proportions 
ranging from 6.030 to 18.894%. However, SEM failed to reveal that MDS affected cognition through CSF amyloid 
pathology and CSF sTREM2.

Conclusions  MDSs are associated with amyloid pathology and cognition. CSF sTREM2 may potentially be an 
intervenable target between depression and AD pathology.
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Background
The World Health Organization (WHO) has estimated 
that the global number of individuals affected by demen-
tia will rise from 55  million in 2019 to 139  million in 
2050 [1]. Alzheimer’s disease (AD), the prevalent form 
of dementia, is characterized by cognitive and behav-
ioral impairments [2]. The typical pathological features 
of AD include the deposition of amyloid-beta (Aβ) and 
the formation of neurofibrillary tangles (NFTs) [3]. Neu-
ropsychiatric symptoms (NPSs) are core features of AD. 
As common NPSs in non-demented elderly, depressive 
symptoms have been proposed to be a prognostic marker 
for AD. However, the pathologic mechanisms underly-
ing the association between depression and AD remain 
unclear. A recent study revealed an association between 
minimal depressive symptoms (MDSs), occurring before 
subclinical depressive symptoms [4], and both amyloid 
pathology and cognitive impairment [5].

Microglial activation, which is central to neuroinflam-
mation, was considered to be a common causal factor 
for both AD and MDSs [6, 7]. In the absence of patho-
genic stimuli, microglia play a neuroprotective role by 
producing cytokines and chemokines [8]. However, once 
activated, microglia produce neurotoxic substances, 
resulting in neuronal damage and accelerating the pro-
gression of depression and AD [9]. Triggering receptor 
expressed on myeloid cells 2 (TREM2) is a recently iden-
tified risk factor for AD [10]. What’s more, cerebrospinal 
fluid (CSF) soluble TREM2 (sTREM2) has been identi-
fied as an important biomarker for microglia-mediated 
neuroinflammation [11]. Studies have demonstrated that 
higher levels of CSF sTREM2 are associated with lower 
amyloid burden [12], slower hippocampal atrophy, as 
well as smaller declines in episodic memory and over-
all cognition in the preclinical phase of AD [13]. Fur-
thermore, in preclinical AD, individuals with MDSs had 
lower CSF sTREM2 levels, greater amyloid deposition, 
and cognitive decline [5, 7]. The above findings indicated 
that CSF sTREM2 might participate in the pathogenesis 
of MDS and AD. Therefore, microglia have the poten-
tial to be a promising target for preventing AD and MDS 
in the future. However, whether and how CSF sTREM2 
affects the associations of MDSs with CSF AD pathol-
ogy biomarkers (amyloid beta 42 [Aβ42], total tau [Tau], 
and phosphorylated tau [pTau]) and cognition function 
remains to be explored.

There is no effective treatment strategy for AD [14, 
15] now. Identifying early biomarkers of the AD disease 
spectrum will enable earlier detection and intervention. 
Early-stage research can help develop effective preven-
tion strategies and treatments that may be more effective 
than late-stage interventions. Therefore, utilizing data 
from non-demented participants in the large Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) database, we 

intended (1) to investigate the difference in CSF sTREM2 
levels between MDS and normal control participants; (2) 
to examine the associations of MDSs with CSF sTREM2, 
CSF AD biomarkers, cognitive scores and brain struc-
ture; and (3) to explore whether CSF sTREM2 and CSF 
AD biomarkers mediated the association between MDSs 
and cognitive scores.

Materials and methods
Participants
Data for non-demented participants were downloaded 
from the ADNI database (http://adni.loni.usc.edu), which 
was initiated in 2003 under the leadership of Michael W. 
Weiner. The primary goal of the multicenter ADNI is to 
assess the feasibility of integrating magnetic resonance 
imaging (MRI), positron emission tomography (PET), 
biomarkers, and clinical and neuropsychological evalu-
ations for tracking the progression of early AD. All the 
participants underwent a series of physical and neuro-
psychological assessments at the initial assessment and 
subsequent follow-ups. Also, participants were asked 
to provide samples of CSF, blood, and urine throughout 
the process. The age range of participants was between 
55 and 92 years. All participants signed written informed 
consent. Detailed information can be found elsewhere 
[16–18]. According to predefined criteria, a total of 
341 mild cognitive impairment (MCI, Clinical Demen-
tia Rating [CDR] = 0.5, Mini-Mental State Examina-
tion [MMSE] = 24–30) participants and 204 cognitively 
normal (CN, CDR = 0, MMSE = 24–30) controls were 
included in this study. These participants had available 
Geriatric Depression Scale (GDS) score, CSF sTREM2, 
CSF AD biomarkers, cognitive score, and brain structure 
data.

Measurements of MDSs and cognition
The 15-item GDS (GDS-15) was utilized to assess the 
depressive symptoms of the participants. Individuals 
with a Geriatric Depression Scale score ≥ 1 and ≤ 7 were 
defined as having MDSs in ADNI [5]. Based on the defi-
nition, the participants were divided into the MDS group 
(1 ≤ GDS ≤ 7) and the normal group (GDS = 0).

Multiple cognitive assessment scales were used to 
assess the cognition of our participants, including the 
MMSE, CDR, and Alzheimer’s Disease Assessment Scale 
13 (ADAS13) for global cognition, as well as two com-
posite scores of ADNI-Memory summary score (ADNI_
MEM) and ANDI composite executive function score 
(ADNI_EF) for memory function and executive function 
[19, 20]. Higher ADAS13 scores, lower MMSE scores, as 
well as lower ADNI_MEM scores, and lower ADNI_EF 
scores indicate poorer cognition.

http://adni.loni.usc.edu
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Measurements of sTREM2 and AD biomarkers
Initial CSF samples were obtained by lumbar puncture, 
sent to the ADNI Biomarker Core laboratory within 1 h, 
and stored in a -80  °C refrigerator. CSF procedural pro-
tocols have been described previously [21]. In brief, the 
concentrations of Aβ42, Tau, and pTau in CSF were mea-
sured using a sophisticated xMAP platform (Luminex 
Corporation) with research-use-only INNO-BIA AlzBio3 
immunoassay kit reagents (Innogenetics, Ghent, Bel-
gium) at the ADNI Biomarker Core Laboratory, Univer-
sity of Pennsylvania. The within-batch precision values 
were < 10% (5.1–7.8% for Aβ42, 4.4–9.8% for Tau, and 
5.1–8.8% for pTau). The relevant data was provided in the 
UPENNBIOMK9.csv file. Detailed information can be 
found elsewhere [21].

The measurement of CSF sTREM2 was used the ELISA 
method described in a previous study [22]. CSF sTREM2 
was measured with the Meto Scale Discovery (MSD) 
platform (data can be obtained in a file named “MSD_
sTREM2CORRECTED.csv” in the ADNI database). 
More details about CSF sTREM2 measurements can be 
found at https://ida.loni.usc.edu.

Measurements of Brain structure
All structural MRI data were downloaded from 
ADNI. The brain structure images were obtained by 
T1-weighted MRI scanning using 1.5 T and 3.0 T 
MRI systems with rapid acquisition of gradient echo 
sequences using sagittal volume magnetization prepro-
cessing. Cortical thickness and subcortical volume were 
quantified by FreeSurfer (version 5.1 http://surfer.nmr.
mgh.harvard.edu/).

Statistical analyses
Differences in baseline characteristics were tested, using 
the chi-square test for categorical variables and the 
Mann-Whitney U test for continuous variables. Categori-
cal variables and continuous variables were expressed as 
numbers (percentages) and mean ± standard deviation 
(SD), respectively. Outliers that were three SDs above or 
below the entire sample mean were excluded. Apart from 
Tau, pTau, and Aβ42, we also added CSF Tau/Aβ42 and 
pTau/Aβ42 ratios into our analyses, since they have been 
reported as more accurate predictors of preclinical AD 
[23].

Linear regression models were employed to investigate 
the relationships of MDSs (an independent variable) with 
CSF sTREM2, AD biomarkers (Aβ42, Tau, and pTau), 
cognition function (reflected in cognitive scores) and 
brain structure (continuous, dependent variables). Age, 
sex, years of education, and ApolipoproteinE (ApoE) ε4 
status were considered as correction factors (covariates). 
Moreover, total intracranial volume serves as a correc-
tive factor for brain structure. We corrected the P-values 

using a false discovery rate (FDR), and an FDR-corrected 
P value of < 0.05 was considered statistically significant. 
We additionally used Pearson’s correlation analysis to 
examine the association between CSF sTREM2 and all 
CSF AD biomarkers. To examine the differences in the 
observed associations across subpopulations, we per-
formed several subgroup analyses stratified by age (< 65 
and ≥ 65 years), sex (male and female), ApoE ε4 carrier 
status (carriers and non-carriers), and clinical status (CN 
and MCI). Moreover, we additionally categorized partici-
pants into four groups based on amyloid pathology status 
as follows: A-MDS-, A + MDS-, A-MDS+, and A + MDS+. 
Amyloid pathological abnormal (A+) or normal (A-) sta-
tus was defined by a cutoff value of 976.6 pg/mL for CSF 
Aβ42 [24].

We conducted mediation analyses to explore whether 
CSF sTREM2 and AD pathology mediated the asso-
ciation between MDSs and cognition. First, mediation 
models were used to investigate whether the relation-
ships between MDS and AD pathology were mediated 
by CSF sTREM2. For each mediator model, the follow-
ing requirements must be reached: (1) MDSs were sig-
nificantly associated with CSF sTREM2; (2) MDSs were 
significantly associated with CSF AD biomarkers; (3) CSF 
sTREM2 was significantly associated with CSF AD bio-
markers, and (4) the associations between MDSs and CSF 
AD biomarkers were attenuated when CSF sTREM2 was 
added in the regression model. Second, we further con-
ducted multiple mediation models utilizing the structural 
equation model (SEM) to assess whether CSF sTREM2 
and AD-related pathology contributed to the influence of 
MDS on subsequent cognition performance. All media-
tion analyses used 10,000 bootstrap replicates. These 
mediation models were adjusted for age, sex, education, 
and ApoE ε4 carrier status. All the mediation analyses 
were performed using “lavaan” and “mediation” in the R 
package (version 4.1.2) [25].

All the above statistical analyses and figure preparation 
were carried out using R version 4.1.0 software. Sample 
baseline characteristic tables were analyzed using SPSS 
Statistics 23.

Results
Participant characteristics
Table 1 and Supplementary Table 1 summarize the base-
line demographic characteristics of participants. A total 
of 545 non-demented individuals (204 CN vs 341 MCI; 
361 MDS vs 184 controls) were included in our study. 
Briefly, the population had a mean age of 72.6 years, 
and 234 (42.9%) subjects were ApoE ε4 carriers. Com-
pared to CN participants, those with cognitive impair-
ment had higher pathologic burden (Aβ42: Z = -8.131, 
P < 0.001; Tau: Z = -3.070, P = 0.028; pTau: Z = -3.816, 
P = 0.003; Tau/Aβ42: Z = -8.038, P < 0.001 and pTau/Aβ42: 

https://ida.loni.usc.edu
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
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Z = -7.285, P < 0.001), smaller hippocampal volumes (Z = 
-7.031, P < 0.001), smaller entorhinal volumes (Z = -5.420, 
P < 0.001), and larger ventricular volumes (Z = -3.974, 
P = 0.001) (Table 1).

Compared to normal controls, MDS participants 
tended to be relatively younger and they were more 
likely to have poorer cognitive performance (ADAS13: 
Z = -1.986, P = 0.047; ADNI_MEM: Z = -2.925, P = 0.005; 
ADNI_EF: Z = -2.379, P = 0.008), lower CSF sTREM2 lev-
els (Z = -3.381, P = 0.001), higher amyloid burden (Aβ42: 
Z = -3.251, P = 0.001; Tau/Aβ42: Z = -2.394, P = 0.017), 
and smaller hippocampal volume (Z = -2.243, P = 0.025) 
(Supplementary Table 1).

Associations of MDSs with CSF sTREM2 and CSF AD 
biomarker
As shown in box Fig.  1A, CSF sTREM2 levels in MDS 
participants were significantly lower than in normal con-
trols in the general population. Similar results were also 
obtained in the male, late-life, ApoE ε4carriers and ApoE 
ε4 non-carriers subgroups (Fig. 1B-G).

Linear regression model indicated that MDSs were sig-
nificantly associated with sTREM2 (β = -0.074, 95%CI = 
[-0.268, -0.046], PFDR = 0.012), Aβ42 (β = -1.749, 95%CI 
= [-5.755, -1.619], PFDR = 0.005), and Tau/Aβ42 ratio 
(β = 0.006, 95%CI = [5.012 × 10− 8, 2.195 × 10− 7], PFDR = 

0.007) in CSF (Fig.  2; Supplementary Tables 2–3). The 
Pearson correlations indicated that CSF sTREM2 was 
positively correlated with all CSF AD biomarkers. CSF 
sTREM2 was positively correlated with Aβ42 (r = 0.042, 
95%CI = [0.003, 0.125], P = 0.033), pTau (r = 0.256, 95%CI 
= [0.176, 0.333], P < 0.001), Tau (r = 0.305, 95%CI = [0.227, 
0.379], P < 0.001), Tau/Aβ42 (r = 0.115, 95%CI = [0.031, 
0.197], P = 0.007), and pTau/Aβ42 (r = 0.121, 95%CI = 
[0.037, 0.203], P = 0.005) (Supplementary Table 4).

In male participants, MDSs were proved to be asso-
ciated with CSF Aβ42 (β = -2.102, 95%CI = [-7.130, 
-1.703], PFDR = 0.020) in linear regression model. MDSs 
were associated with CSF Tau/Aβ42 (β = 0.009, 95%CI = 
[6.295 × 10− 8, 3.101 × 10− 7], PFDR = 0.036) and pTau/Aβ42 
(β = 0.004, 95%CI = [0.001, 0.010], PFDR = 0.035) in female 
participants. Similarly, we found that MDSs were asso-
ciated with CSF sTREM2 (β = -1.043, 95%CI = [-3.823, 
-0.498], PFDR = 0.024), Aβ42(β = -1.708, 95%CI = [-5.722, 
-1.330], PFDR = 0.011), and Tau/Aβ42(β = 0.007, 95%CI = 
[7.586 × 10− 8, 3.927 × 10− 7], PFDR = 0.013) in late-life par-
ticipants. MDSs were associated with Aβ42 (β = -10.182, 
95%CI = [-36.221, -6.131], PFDR = 0.027) and Tau/Aβ42 
(β = 1.340 × 10− 12, 95%CI = [5.952 × 10− 13, 4.995 × 10− 12], 
PFDR = 0.042) in ApoE ε4 non-carriers.

Table 1  Baseline characteristics of participants
Baseline characteristics Total CN MCI P-value
N(%) 545 204(37.43) 341(62.57)
Age, year, mean ± SD 72.6 ± 6.9 73.6 ± 5.8 72.07 ± 7.41 0.136
Sex, Female (%) 232 (42.57) 100(49.02) 132(38.71) 0.165
Education years, mean ± SD 14.5 ± 3.1 14.61 ± 3.08 14.39 ± 3.09 0.290
ApoE ε4 carriers, n (%) 234 (42.9) 56(27.45) 178(52.20) < 0.001
MDSs, n (%) 364(66.79) 110(53.92) 254(74.49) < 0.001
ADAS13 score, mean ± SD 12.0 ± 5.5 9.09 ± 4.20 13.72 ± 5.44 < 0.001
MMSE score, mean ± SD 28.15 ± 1.81 29.04 ± 1.21 27.56 ± 1.90 < 0.001
ADNI_MEM score, mean ± SD 0.383 ± 0.829 0.91 ± 0.67 0.71 ± 0.76 < 0.001
ADNI_EF score, mean ± SD 0.309 ± 0.973 0.70 ± 0.90 0.74 ± 0.94 < 0.001
CDR score (0,0.5) 0 0.5 < 0.001
CSF sTREM2 Mean ± SD 3554.9 ± 2121.2 3798.9 ± 2123.7 3408.83 ± 2109.36 0.115
CSF biomarkers and ratios, mean ± SD
Aβ42 pg/mL 552.4 ± 297.3 685.02 ± 239.5 473.11 ± 270.42 < 0.001
A + T+ 198(36.33) 55(26.96) 143(41.94) < 0.001
Tau pg/mL 134.6 ± 59.2 122.6 ± 41.9 141.85 ± 66.45 0.028
pTau pg/mL 27.4 ± 16.4 22.98 ± 13.07 30.06 ± 17.58 0.003
Tau/Aβ42 ratio 0.367 ± 0.332 0.23 ± 0.19 0.45 ± 0.37 < 0.001
pTau /Aβ42 ratio 0.826 ± 0.927 0.05 ± 0.06 0.10 ± 0.10 < 0.001
Brain structure, mean ± SD
HV (mm3) 7034.62 ± 1132.665 7484.16 ± 889.7 6751.01 ± 1178.13 < 0.001
EC thickness (mm3) 3448.68 ± 1005.687 3804.8 ± 773.5 3225.07 ± 1069.46 < 0.001
Ventricular volume (mm3) 34910.99 ± 22676.354 29712.7 ± 19051.2 37947.30 ± 24059.88 0.001
Abbreviations: MDSs: minimal depressive symptoms, ApoE: ApolipoproteinE, MMSE: Mini-Mental State Examination, sTREM2: soluble triggering receptor expressed on 
myeloid cells 2, CSF: cerebrospinal fluid, Aβ 42: Amyloid β peptide 42, pTau: phosphorylated tau; ADAS, Alzheimer’s Disease Assessment Scale; MMSE, Mini-Mental 
State Examination; MEM, memory function; EF, executive function; HV hippocampal volume, EC entorhinal cortex
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Associations of MDSs with cognition and brain structure
In the total participants, significant positive correlations 
of MDSs with ADAS13 (β = 0.161, 95%CI = [0.070, 0.544], 
PFDR = 0.018) scores were observed (Fig.  2; Supplemen-
tary Table 5). Significant negative associations were 
observed between MDS and ADNI_MEM (β = -0.105, 
95%CI= [-0.367, -0.078], PFDR = 0.007), ADNI_EF (β = 
-0.129, 95%CI = [-0.443, -0.103], PFDR = 0.007), and hip-
pocampal volumes (β = -2170000, 95%CI = [-3464061, 
-883217.1], PFDR = 0.003) (Fig.  2; Supplementary Tables 
5–6). Besides, subgroup analyses an association between 
MDSs and ADNI-MEM (female: β = -0.159, 95%CI = 
[-0.578, -0.097], PFDR = 0.036; late-life: β = -0.107, 95%CI 
= [-0.373, -0.079], PFDR = 0.012; ApoE ε4 non-carriers: 
β = -0.127, 95%CI = [-0.453, -0.075], PFDR = 0.027) with 
ADNI_EF (female: β = -0.161, 95%CI = [-0.605, -0.079], 
PFDR = 0.035; late-life: β = -0.123, 95%CI = [-0.431, 
-0.078], PFDR = 0.013; ApoE ε4 non-carriers: β = -0.169, 
95%CI = [-0.583, -0.122], PFDR = 0.027) in female, late-
life, and ApoE ε4 non-carriers. Besides, an association 
between MDSs and hippocampal volume was found in 
late-life (β = -2469000, 95%CI = [-3740704, -1196346], 
PFDR = 0.010) and ApoE ε4 carriers (β = -487.300, 95%CI 
= [-784.743, -189.935], PFDR = 0.015).

Additional analyses
Activation of microglia may be protective in the early 
stages, but harmful in the late stages. Therefore, we strat-
ified the statistical model according to cognitive states 
(CN vs MCI). In the CN and MCI subgroups, MDS was 
not associated with CSF sTREM2, CSF AD biomarkers, 
cognitive scores, or brain structure (Fig.  2; Supplemen-
tary Tables 2–3, 5–6). To further verify whether amyloid 
affects CSF sTREM2 differences between MDS and nor-
mal controls, we performed subgroup analysis accord-
ing to the status of amyloid pathology. Interestingly, we 
only found that CSF sTREM2 levels were lower in the 
A + MDS + group compared with the A + MDS- group (β 
= -0.247, 95%CI = [-0.448, -0.045], PFDR = 0.009) (Fig. 3).

CSF sTREM2 mediated the relationship of MDSs with 
amyloid pathology
Based on the above-mentioned findings, we explored 
the influence of CSF sTREM2 on the effect of MDSs on 
AD pathology, we used the following mediation path-
way: MDSs → CSF sTREM2 → AD pathology. Results 
of the mediation analyses showed that the association 
between MDS and Aβ42, Tau/Aβ42, with pTau/Aβ42 was 
mediated by CSF sTREM2 in all participants, with the 
proportion of mediation varying from 6.030 to 18.894% 
(Fig.  4A-C). We also found CSF sTREM2 mediated the 
association between MDS and the Tau/Aβ42 ratio in 

Fig. 1  Differences in CSF sTREM2 between MDS group and normal control group. CSF sTREM2 of MDSs is lower than normal in total subjects, and male, 
late-life, ApoE ε4 (+) as well as ApoE ε4 (-) subgroups. Abbreviations: MDS, minimal depressive symptom; ApoE, apolipoproteinE; sTREM2, soluble of trigging 
receptor expressed on myeloid cells 2
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the late-life subgroup, with a mediating proportion of 
12.330% (Fig. 4D). All the above findings suggest that CSF 
sTREM2 serves as a mediator in the association between 
MDSs and amyloid pathology.

Serial mediation between MDSs and cognition
CSF sTREM2 was activated in response to amyloid 
pathology [26]. The associations between amyloid pathol-
ogy and cognition were significant (Supplementary Table 
7). Therefore, we further analyzed whether sTREM2 
and amyloid pathology influenced the effect of MDS on 
subsequent cognitive function. We used a chain mul-
tiple mediation model, including three mediation path-
way analyses: (1) MDS → CSF amyloid pathology → 
CSF sTREM2 → ADNI_MEM; (2) MDS → CSF amyloid 

pathology → ADNI_MEM; and (3) MDS → CSF sTREM2 
→ ADNI_MEM.

CSF Aβ42 and the Tau/Aβ42 ratio rather than sTREM2 
showed significant associations with ADNI_MEM. The 
third pathway results indicated that both Aβ42 and Tau/
Aβ42 mediate the association between MDS and ADNI_
MEM. The serial mediation model failed to find that the 
indirect effects of MDS on ADNI_MEM through CSF 
amyloid pathology and CSF sTREM2 were significant 
(Fig. 5A-C). In addition, we found that Aβ42, Tau/Aβ42, 
and pTau/Aβ42 mediated the association between MDS 
and ADNI_EF. Similarly, CSF sTREM2 is not an inter-
mediate mediator in the association between MDS and 
ADNI_EF (Fig. 5D-F).

Fig. 2  Linear regression showed the associations of MDSs with CSF biomarkers, cognition and brain structure. MDSs were associated with CSF sTREM2, 
amyloid pathology, cognition, and brain structure in total and subgroups. The study was analyzed in subgroups by age, sex, and ApoE ε4 carrier status. 
Abbreviations: MDS, minimal depressive symptom; ApoE, apolipoprotein E; ADAS, Alzheimer’s Disease Assessment Scale; MEM, memory function; MMSE, 
Mini-Mental State Examination; EF, executive function; CSF, cerebrospinal fluid; sTREM2, soluble of trigging receptor expressed on myeloid cells 2; Aβ 42, 
Amyloid beta 42; pTau, phosphorylated tau; HV hippocampal volume, EC entorhinal cortex
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Discussion
Our study yielded four main findings: (1) individuals 
with MDSs had significantly lower CSF sTREM2 levels 
than normal controls; (2) the association between MDS 
and amyloid pathology was partially mediated by CSF 
sTREM2; (3) the association between MDS and cognitive 
scores (ADNI_MEM, ADNI_EF) was partially mediated 
by amyloid pathology; and (4) however, the correlation 
between MDS with cognition was not mediated by CSF 
amyloid pathology and sTREM2.

As reported in previous studies [27–29], major depres-
sion is a risk factor for developing AD. Our findings are 
consistent with a previous study which demonstrated 
that CSF sTREM2 levels were lower in the MDS group 
compared to normal controls [7]. Notably, both stud-
ies only included individuals diagnosed with minimal 
depressive symptoms. Similarly, in 2024, Reichert Plaska 
and colleagues found that CSF sTREM2 levels were also 
lower in individuals with late-life major depressive dis-
order compared to controls [30]. Moreover, they found a 
negative association between CSF sTREM2 and baseline 
scores of Hamilton Depression Rating Scale (HAMD). To 
summarize, lower sTREM2 was associated with greater 

depressive symptoms. To be clear, we only found this 
association in the late-life subgroup analyses. This sug-
gests that age might also be an important factor, which 
is also supported by Stefan Teipel’s article [31]. The sam-
ple sizes of these current studies are relatively small, and 
future multicenter large-sample studies are essential.

Neuroinflammation and microglial activation play 
important roles in the pathogenesis of depression and 
AD [6, 32]. A previous study [31] found that the level 
of CSF sTREM2 was significantly lower in participants 
with depression compared to healthy controls. Recently, 
HaiXia and her colleagues reported that microglial acti-
vation plays a role in the development of depression [33]. 
Animal models and PET imaging also provided evidence 
for the involvement of microglial activation in the patho-
genesis of depression [34, 35]. A study demonstrated 
that higher levels of CSF sTREM2 were associated with 
slower rates of Aβ accumulation [12]. Several studies 
have demonstrated that elevated CSF levels of sTREM2 
occur in the early preclinical AD stage [36, 37]; plateau 
in prodromal AD, and then increase again in mild to 
moderate AD where they correlate with pTau [36–38]. 
These changes of sTREM2 are highly associated with 

Fig. 3  CSF sTREM2 in the biomarker classification. The cutoff values to define abnormal CSF AD biomarkers were < 976.6 pg/mL for Aβ42 (A +). Abbrevia-
tions: sTREM2, soluble of trigging receptor expressed on myeloid cells 2; Aβ 42, Amyloid beta 42; MDS, minimal depressive symptoms
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increased amyloid deposition and cognitive impairment 
[37]. Our study and that of Reichert Plaska et al [30] also 
confirmed lower CSF amyloid levels in those with mini-
mal depressive symptoms and late-life major depression. 
Two studies from the same cohort confirmed this finding 
[39, 40]. However, our study failed to find a statistically 
significant difference in CSF sTREM2 between the MCI 
and CN subgroup. This inconsistency may be due to the 

differences in the included populations and longitudinal 
studies are needed to validate our findings.

Consistent with the previous study by Wei et al [5], 
our study also found that Aβ42 and Tau/Aβ42 ratio were 
mediators of the associations of MDS with ADNI_MEM 
and ADNI_EF scores. However, we did not find Aβ42 and 
Tau/Aβ42 as mediators of the association between MDS 
and ADAS 13 scores. This inconsistency across different 

Fig. 5  Structural equation models. Three mediation pathways were conducted between MDS and MEM: (1) MDS → CSF amyloid pathology → CSF 
sTREM2 → ADNI_MEM; (2) MDS → CSF amyloid pathology → ADNI_MEM; (3) MDS → CSF sTREM2 → ADNI_MEM. All mediation paths were calculated 
by a bootstrap test with 10,000 resampling iterations and adjusted by age, sex, education, and ApoE ε4 status. The dotted line indicates that the indirect 
effect is not significant (P ≥ 0.05), and the solid line indicates that the indirect effect is significant (P < 0.05). *P < 0.05, **P < 0.01 and ***P < 0.001. Abbrevia-
tions: MDS, minimal depressive symptom; sTREM2, soluble of trigging receptor expressed on myeloid cells 2; Aβ, amyloid-β; MEM, memory function; ApoE, 
ApolipoproteinE

 

Fig. 4  CSF sTREM2 mediated the relationship between MDS and amyloid pathology. CSF sTREM2 mediated the association of MDS with Aβ42, Tau/Aβ42 
and pTau/Aβ42. *P < 0.05, **P < 0.01 and ***P < 0.001. Abbreviations: MDS, minimal depressive symptom; CSF, cerebrospinal fluid; sTREM2, soluble of trig-
ging receptor expressed on myeloid cells 2; Aβ 42, Amyloid beta 42; pTau, phosphorylated tau
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cognitive assessment scales might be due to selection 
bias. The Harvard Aging Brain Study (HABS) showed 
that higher amyloid load at baseline was associated with 
worsening depressive symptoms evaluated by the GDS 
scores over time in cognitively normal elderly [41]. In 
addition, studies have shown that depressive symptoms 
contribute to the progression of MCI [42, 43]. In our cur-
rent study, we found that MDS not only could directly 
affect cognition but also could affect cognition through 
amyloid pathology. The mediation model revealed a neg-
ative association between MDS and CSF sTREM2. Fur-
thermore, a positive association between CSF sTREM2 
and CSF Aβ42 was observed, suggesting reduced brain 
amyloid pathology and indicating protective effects of 
higher CSF sTREM2 levels against brain amyloid depo-
sition. A recent study suggested lower sTREM2 may be 
associated with decreased phagocytosis, which leads to 
decreased brain Aβ clearance, increased brain amyloid 
load, and decreased CSF Aβ42 [30]. This was confirmed 
in a 2023 article analyzing postmortem brains of major 
depressive disorder samples [44].

Limitations
The current study has certain limitations. First, our study 
was restricted to volunteers recruited from the ADNI 
who met the enrollment requirements. It’s difficult to 
generalize our conclusions to other populations. Future 
large-scale studies are still needed to validate these find-
ings. Second, our study was restricted to individuals with 
MDSs, which might contribute to an underestimation of 
the effect size of depression. Third, our research employs 
CSF AD biomarkers rather than PET imaging, potentially 
introducing biases such as the absence of pathological 
spatial distribution data, identification biases in early 
pathological changes, assessment biases in disease sever-
ity, and biases in the external validity of study findings. 
Fourth, this is a cross-sectional study, which means that 
causality cannot be established. Further high-quality lon-
gitudinal cohort studies are needed in the future.

Conclusions
Taken together, MDS was significantly associated with 
CSF sTREM2, amyloid pathology, cognitive scores, and 
hippocampal volume in a non-demented sample. Fur-
thermore, the association between MDS and cognition 
may be partially explained by amyloid pathology.
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